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ISOPERIMETRIC ESTIMATES OF THE SOLUTIONS OF A CLASS OF 
PSEUDODIFFERENTIAL EQUATIONS AND THEIR APPLICATION TO CRACK PROBLEMS* 

E.I. SHIPBIN 

Isoperimetric estimates are obtained of solutions of boundary 
value problems for a class of pseudodifferential equations. This class 
of equations includes the equation of problems on plane normal 
discontinuity cracks located in a homogeneous linearly elastic space and 
an inhomogeneous space whose Young's modulus has a power-law dependence 
on the distance to the plane of the crack. As it applies to crack 
problems, the established inequalities yield, in particular, 
isoperimetric estimates of the maximum opening of the crack and its 
volume under arbitrary loads. 

1. Before formulating and proving the results obtained, let us recall the fundamental 
defdnitions and theorems to be utilized below. 

The functions f(x) and g(x) are called equally measurable if Va, b.p(x: a<f(x) <b) = P@: 

= < g (X) < 6). Here Ir1. ..) is a measure of the appropriate set. 
It is said that the functions f(x) and g(x) have an identical direction of growth if Vx, 

y. (f (x) - f (Y)) k w - g (Y)) > 0. 

Let the functionsI(~)>o: We say that the function j*(x) is obtained from f(x) by 
Schwartz symmetrization if f* (x) is equally measurable with f(x) is spherically-symmetric, 
and does not increase as the radius increases. 

Let f(x) > 0, g(x) > 0. Let us assume that f+(x) is equally measurable with f(x) and g+(x) 
with g(x), where the functions f+(x) and g+(x) have an identical direction of growth. Then the 

following inequality holds /l/: 

Let f(x)>o.g(x)>o,h(x)~O, then /2, 3/ 

(1.2) 

The main methods of constructing isoperimetric inequalities for solving differential 
equations were developed in /l/. In particular, the following estimate is proved in /l/. 

Let Us (x) be a solution of the equation 

- AU(X)= 1, XEG, GCHn, "J&-O (1.3) 

Then the following inequality holds: 

s SU&)dx uG (X) dx d 
G K 

(1.4) 

where K is a sphere whose volume equals the volume of the domain G. 
The estimate can be extended in an obvious manner to the case of an arbitrary right-hand 

side in Poisson's equation. 
Let "G (f, x, be a solution of the equation 

-AU (x) = f (xi), f (x) > 0. x tz 6, u laG = 0 (1.5) 

Let us use the notation 

w,(f) = suG Cf. xl f (x) dx 
G 
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The following estimate holds 
wo U) < W, U*) (1.3) 

Then estimates (1.4) and (1.6) were generalized to other classes of equations. The 
validity of (1.4) and (1.6) is proved in /4/ for solving pseudodifferential equations of the 
form 

P(+Aau (x) + tsu w = f w f (x) 2 0 (1.7) 
x EG, u(x)~&~(G), O<a<2 

Here Aa is a pseuodifferential operator with the symbol )&I” and Po is the contraction 
in the domain G. 

Inequality (1.4) is generalized to a differential equation with variable coefficients in 
the highest derivatives in /5/. Stronger inequalities than (1.4) and (1.6) /6, 7/ are proved 
for the solutions of Eqs.(l.3) and b1.5) 

(%)r (f. X)dUK(f.S x) (1.3) 

For equations containing the lower terms 

--u(x)+@u(x)=f(x), f(x)>03 XEG, uJac=o 

a somewhat less strong inequality /7/ is proved 

5 ("0). (f. X) dx d 1 uK (f*, x) dr 
K, xv 

(f.9) 

(K, is a pshere with centre at the origin and radius r,r<r(K). and r(K) is the radius of the 
sphere K). 

The following inequalities 

in particular, follow 
The inequalities 

max uG (f, x) G ~RX tbK cf., X) 

c&x)dx< i@,,x)dx 

(1.10) 

(1.11) 
G K 

from (1.9). 
(1.9)-(1.11) are proved below for the solutions of (1.7). For simplicity 

we later set t=O. The case t>0 is examined without any changes. 

2. We now denote by uG(j, X) the solution of the equation 

pGAaU (X) = f(X), X E G, f(x) > 0 
(2.1) 

u(x) E&,*(G), O<a< 2 

As we know /4/, UG (f9 x, is a minimum of the functional 

I (G, f, u) = (A=,. u)/V, UP, u (x) E H& (G) (2.2) 

where I (G, 1, uG !I, 4) = K’ (f). 
We first prove the inequalities obtained earlier /4/ by a different method and we set up 

the properties of the solutions. 

Lertuna 1. Let u(x)EH&(G) and u (x) > 0. then the following inequality holds: 

(A% u) > (Aa,*, u.) 

Proof. According to /a/ 

(2.3) 

(A%, u) = c, s I~(x+Y)---Yx)I* 

lYl"+a 
dxdy= 

ccz s 
Iu (z)- u (a? 

( z - x In+a 
dx dr, C, = ,onst 

(2.4) 

We let K,(S) denote a function defined in the domain O<S<CO 

We have 
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(A%, u) = C, lim 
m-m s 

Km (I z - x I) 1 u (z) - u (x) Ia dx dz = lim I,,, (u) 
m-0 

The first terms in the expresions for Jm (u) and I,(+) are in agreement since the 
Schwartz symmetrization conserves L, as the norm of the functions. The inequality &,,(~,a)< 

8, (U.. u3 holds because of the above-mentioned inequality (1.2) + We hence obtain J,,,(tl)>J,(,+) 

and by passing to the limit as m+oo we confirm the lemma (2.3). The inequality (2.3) was 
proved /4/ by using the theory of interpolation spaces. 

The estimate (1.6) follows from the assertion in Lemma 1 and (2.2). Indeed 

> (2.5) 

In (2.5) we used the fact that, by virtue of /9/, if f>O in (2.5) then uG(f,x)>O and 
we are in the conditions of Lemma 1. Moreover, the functions f.(x) and (Q. V. x) have an 
identical direction of growth and by virtue of (1.1) 

Note that it follows from the proof of (2.5) that the function ux(f,,x) is invariant 
under Schwartz symmetrization, since otherwise Schwartz symmetrization could be applied to 

UK V.? x) by diminishing the value of the functionals (2.2). 

3. We will now prove the inequalities (1.9)-(1.11) for the solutions of Eqs.(2.1). 

Lenrma 2. Let B (x). V(X) E Hi,, (6). then 

(A%, v) = c, s (u(x+Y)--Ux))(~(x+Y)--Ux)) dxdy= 
lrr- 

ccz s (u (4 - u (x)) (u (4 -v w 
IX-XI”+” 

dz dx 

The relationship (3.1). is proved in exactly the same way as the expression for (A~,,,.) 
is deduced in /8/. 

We use the notation 

u- (5) = s u (x) eicx* 8 dx 

It follows from the relation 

analogous to the equality for V(X) and the Parseval equality, that 

s (u (x + Y) - u (x)) (u (= + Y) - u (9) 
I Y In+a 

dx  dy _ 

1 
0” s 7 

u” (E)” (E) 1 e&s* 5) - 1 12 dS dy 
I Y I”‘” 

According to /8/ 

s ( ,-i(S. e) _ * IB 

I Y ln+a dy = C,’ I E la 

(3.Q 

(3.2) 

(3.3) 

From (3.2) and (3.3), (3.1) follows. Lemma 2 is proved, 
Central to the proof of inequalities (1.9)-(1.11) is the following theorem. 
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Theorem 1. Let u (x) a 0. v b) a 0 E H,& (c) be real valued functions that have an identical 
direction of growth. Then the following inequality holds: 

(A% u) > (Aa,*. U.) (3.4) 

Proof. We use the notation 

Hm(U'U)=C,SKm(lZ-XI)("(Z)-U(X))("(Z)-U(x))dzdr 

where K,is the kernel introduced above, then 

According to (3.1) 

(A"u,u)= lim R,(u. V) 
m-c9 

R,,, (u, u) = ZC, s u (z) u (z) K,,, ( 1 z -x I) dx dz -- 2CaS,,, (u. u) 

Integrating the right component with respect to x we obtain 

R,,, (% v) = Cm S u(z)u(z)dz-ZC,S,(u, u) 

We have an analogous equality on replacing u, v by II.,".. 
Some the functions U(X) and V(X) have an identical direction of growth according to 

the assumption, while the functions u.(x).u~(x) are equally measurable with them and have an 
identical direction of growth by construction, then 1 D (z) u (E) dz = j IL* (z) V,(Z) dz. Moreover, sm(2b, 

V)&sm (u., v.) by virtue of (1.2) , Therefore, R,, (u, U) 2 R,, (u,, 0.). Passing to the limit here as 
m-03, we arrive at (3.4). Theorem 1 is proved. 

Theorem 2. The inequality 

(aa(u,),(f, x). u*(x)) G(~~aQ(f**x)* 08 (X)) (3.5) 

holds for the solutions of (2.1). 
Here V*(X) is an arbitrary non-negative function, invariant under Schwartz symmetrization, 

from the space H&(K). 

Proof. Let the function "(X) be equally measurable with u* (X) and have an identical 
direction of growth with the function Us (f, @* Then according to (3.4) 

(Aaso(f. x)9 v(x)) > (Aa( (f,~). vt (x)) (3.6) 
On the other hand 

(A'%,(f,x), u(x)) = (f(x), u(x)) <(f.(x), u*(x)) = (Aaux(f,,x). U*(X)) (3.7) 

The derivation of inequalities (3.7) relies on the fact that the functions f(x) and f*(x) 
as well as V(X) and % (r) are equally measurable, where f* (x) and "8 (x) have an identical 
direction of growth. From (3.6) and (3.7) we obtain (3.5). Theorem 2 is proved. 

We obtain the inequalities (1.9)-(1.11) for solutions of (2.1) as a corollary of Theorem 
2. 

We will prove the validity of (1.9). We examine the function U*(X) that is a solution 
of (2.1) in a sphere K with right-hand side g.(x) that equals one in the sphere K, lying in 
K and is zero outside K,. Since such a function g,(x) is invariant under Schwartz symmetriz- 
ation, V. (xx) possesses the same property as was mentioned above. Consequently, according to 
(3.5) 

(Aa( (fs x:)9 D,(X)) = ((Q, (f, x). Aa,. (x)) = 5 (u&(f,x)dx< 
-% 

(.\a UK (fr3 X).U* (x)) = s UK (fw h)dX 
x7 

The inequality (1.9), and therefore, the inequalities (1.10) and (1.11) are therefore 
proved. 

For n= 2, Eqs.(2.1) correspond to problems concerning cracks in a homogeneous linearly 
elastic space (a=l) and in an inhomogeneous space whose Young's modulus depends, as a power 
law on the distance to the plane of the crack (E = Ee 1 cza 11-a , O<a<l (it is assumed that 

the crack is located in the plane .z~= 0). Eq.(1.7) corresponds to the problem of a crack 
between whose surfaces there are linear connections. The right-hand side of the equations f(x) 
corresponds to applied forces, and the solution corresponds to the crack opening. Therefore, 
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inequalities (1.9)-(1.11) yield estimates of the maximum opening and volume of a crack in the 
problems mentioned in terms of analogous characteristics of the problem of a circular crack 
with loads, obtained by using Schwartz symmetrization from the original load. 
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